Barnstable Town Council

Update on Wastewater Efforts In Barnstable

Department of Public Works
January 3, 2019

Agenda

- Problem Review
- Plans
 - The Process
 - Actions to Date
 - The Plans
 - Non-Traditional Actions
 - Traditional Actions
 - Other Ideas
- Discussion
The General Problem

- Wastewater issues
 - Impaired embayments
 - Groundwater quality concerns
 - Pond water quality concerns
 - Failing/expensive septic systems
 - Economic development requirements
 - New flood zones
 - Regulatory requirements

The “208” Problem - Nitrogen

- Impacts marine waters
 - Limiting nutrient
- Origins
 - Septic systems
 - Fertilizer runoff
 - Stormwater disposal
 - Atmospheric deposition
 - Sediment release
Other Issues of Concern

- Phosphorus in freshwater ponds
- Contaminants of Emerging Concern (CECs)
 - Pharmaceuticals
 - Antibiotics
 - Hormones
 - Personal care products
 - Chemicals
- PFOS/PFOA

Regulations

- Massachusetts Estuaries Program (MEP)
 - MA DEP & UMASS-Dartmouth
 - 89 estuaries southeast MA
 - Watershed/estuary model
 - predicts water quality changes resulting from land use decisions
- DEP develops TMDLs
 - Total Maximum Daily Loads
 - Max pollutant a water body can receive and still meet water quality standards
- Eelgrass is the sentinel species
- Cape Divided by watersheds
“5 Needs” Plans Should Address

- Sanitary Needs
 - Poor Soils
 - Variances
 - High groundwater
- Convenience and Aesthetics
 - Excessively Expensive Systems
 - Mounded Systems
 - Impact on Village Aesthetics
- Protecting Groundwater and Water Supplies
 - Nitrogen
 - CECs
- Protecting Surface Waters
 - Nutrients
- Enabling Desired Sustainable Economic Growth
Town of Barnstable, Department of Public Works

What a Wastewater Plan Does

- **Town-wide** comprehensive plan that:
 - Identifies water quality requirements
 - Identifies solutions
 - Nontraditional - dredging, aquaculture, PRBs, UD toilets, fertilizer plans, etc.
 - Traditional - sewers, etc.
 - Management - zoning, etc.
 - Recommends capital improvements
 - Identifies funding/financing mechanisms

Town of Barnstable, Department of Public Works

“Organic”

The Plan is Changing
- Needs to meet regulatory requirements
- Flexible
 - In house staff leads consultant
 - Able to adapt to changes in technology
- Adapting to community needs and desires
 - Public feedback from presentations and Political Leaders
The TOB Process

- Collaboration of WRAC Members, Town Staff, and DEP
- A lot-by-lot evaluation of the “5 Needs” using GIS tool
 - Sanitary Conditions/Identified public health issues
 - bad soils/high groundwater
 - effluent surfacing over leaching field
 - Inadequate set-back from private wells/property lines
 - direct discharge of sanitary wastewater to a water body
 - Water Supply Protection
 - Identified “impaired” or endangered wells and neighborhoods likely impacting them
 - Surface Waters - Nutrient Enrichment
 - Marine – SMAST Modeling and CCC 208
 - Freshwater – TOB sampling and study of ponds
 - Convenience and Aesthetic Issues
 - Identified Mounded septic systems, velocity zones, and excessive septage pumping
 - Sustainable Economic Development
 - Met with Planning, and others, to understand where wastewater solutions needed for community chosen economic development

Identified Needs

Town of Barnstable, Department of Public Works
To Date

- Winter 2015/16 formed the WRAC – Began meeting
- June 2016 – Complete the “208 Bookends”
- Fall 2016 - Completed Gap filling and GIS Mapping Layers
- Winter 2016 through Spring 2017 - Plan Construction
- Summer 2017 - Complete a Draft Plan
- Summer 2017 - Present Draft Plan to Town Council
- Fall/Winter 2017 & Winter/Spring 2018 - Develop the alternatives approach on Marstons Mills River
- Fall/Winter 2017 - Conceptually design, and propose for funding, initial round of Traditional Solution Projects
- Winter 2018 - Evaluation of Marstons Mills School Wastewater Facility
- Winter/Spring 2018 – Meet with DEP on Permitting of Alternatives
- Spring 2018 - Approved Funding for Preliminary Design of initial Traditional Solution Projects
- Spring 2018 - Approved Funding for Evaluation of Wastewater Disposal Alternatives
- Spring 2018 - Began sampling to support permitting for Alternatives
- Spring 2018 – Began modeling WPCF (BIOWIN)
- Summer 2018 – Began Preliminary Design of Initial Traditional Solution Projects
- Summer 2018 – Begin Evaluation of Wastewater Disposal Alternatives
- Summer 2018 – Renewal of WPCF License
- Summer/Fall 2018 – Construction of the Attucks Lane Pump Station
- Summer/Fall 2018 – Begin Public Outreach and Feedback
- Fall/Winter 2018 – Dredging of Sampson’s Island - flushing in Three Bays
- Winter 2018/19 – Understand Financial Options/Opportunities
- Spring 2019 – Present “Final Draft” Plan to Town Council
- Summer 2019 – Submit Final Draft Wastewater Plan to CCC for review
- Fall 2019 - Draft CWMP to DEP

The Plan - Phasing

- Three 20-Year Phases
 - Phase I - Years 0-20
 - Phase 2 – Years 20-40
 - Phase 3 – Years 40 -60
Current Plan

Phase Statistics

<table>
<thead>
<tr>
<th>Item</th>
<th>Phase 1 (0-20 Years)</th>
<th>Phase 2 (20-40 Years)</th>
<th>Phase 3 (40-60 Years)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>WW Captured (GPD)</td>
<td>719,400</td>
<td>697,300</td>
<td>373,800</td>
<td>1,790,500</td>
</tr>
<tr>
<td>Load N Removed (kg/year)</td>
<td>24,000</td>
<td>25,000</td>
<td>14,000</td>
<td>63,000</td>
</tr>
<tr>
<td>Number of Parcels Affected</td>
<td>3,513</td>
<td>3,707</td>
<td>2,296</td>
<td>9,516</td>
</tr>
<tr>
<td>Road Miles</td>
<td>66</td>
<td>70</td>
<td>45</td>
<td>181</td>
</tr>
<tr>
<td>% N Removed</td>
<td>40%</td>
<td>39%</td>
<td>21%</td>
<td>100%</td>
</tr>
</tbody>
</table>

- **Conservative - No assumed credit for nontraditional solutions**
 - Installed in Phase I
 - Monitored throughout Phase I and II
 - Ideally will enable avoidance of Phase III via Adaptive Management
Existing Facility
- Treatment Capacity = 360,000 gpd (annual average day)
- Disposal Capacity = 840,000 gpd (max day)
- Effective Available Capacity = 75,000 gpd (annual average day)
Additional Cotuit Expansion

Stage Statistics

<table>
<thead>
<tr>
<th>Item</th>
<th>Stage 1</th>
<th>Stage 2</th>
<th>Stage 3</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>WW Captured (GPD)</td>
<td>37,195</td>
<td>84,460</td>
<td>22,808</td>
<td>144,463</td>
</tr>
<tr>
<td>Load N Removed (kg/year)</td>
<td>1,349</td>
<td>3,063</td>
<td>827</td>
<td>5,239</td>
</tr>
<tr>
<td>Number of Parcels Affected</td>
<td>253</td>
<td>480</td>
<td>155</td>
<td>888</td>
</tr>
<tr>
<td>Road Miles</td>
<td>6</td>
<td>9</td>
<td>3</td>
<td>18</td>
</tr>
</tbody>
</table>

Town of Barnstable, Department of Public Works
Non-traditional Projects Underway

Focus Area - Three Bays
Focus Area - Three Bays

Non-traditional methods.
- Cotuit Bay Inlet Dredging
- Mill Pond dredging
- Abandoned cranberry bogs conversion
- Warren’s Cove - aquaculture
- Alternative septic systems
- Permeable Reactive Barriers (PRBs)
- Stormwater treatment

Sampson’s Island Dredging

Town of Barnstable, Department of Public Works
Mill Pond Dredging

• The Issue:
 – Mill Pond is full of silt and debris – 9 feet thick in places
 – In 20 years nitrogen removal capacity has declined from 20% to 10%
 – Healthy ponds = 30% to 50%
 – If 50% restored, estimated remove over 2,200 kg/year of additional nitrogen

• The Solution:
 – Dredge to its original depths (sand layer) and perimeter
 – Estimated 60,000 CYs of material (to be confirmed)
 – Pond depths restored to approximately 8 feet in the deepest areas

Cranberry Bogs

• The Issue:
 – Existing and abandoned bogs - Ideal locations for nontraditional solutions

• The Solutions:
 – Conversion to ponds (~50%)
 – Conversion to wetlands (TBD)
 – Installation of floating wetlands (8-15%)
Warrens Cove

- The Issue:
 - Warrens Cove currently not appropriate for aquaculture due to silt.
 - Potential to be ideal nursery for aquaculture farms
 - The product relocated to established aquaculture farms
- The Solution:
 - Dredging Warrens Cove back to a sandy bottom
 - Establish aquaculture nurseries
 - Variety of species
 - The Cape Cod Commission estimated that aquaculture beds/floating racks can remove 8-15% of the nitrogen they encounter

Other Non-traditional Opportunities

- PRBs
 - EPA Demonstration Project
 - Prince Cove Area
 - Horse Farms?
- Alternative Septic Systems
 - Prince Cove
- Alternative Toilets
 - Cape Cod Academy
Stormwater

• The Issue:
 – Stormwater systems are in various states of repair

• The Solution:
 – A comprehensive survey identifying those that need repair, or replacement.
 – Identify new systems/BMP needed to protect water quality
 – Credit for work already done
 • Cotuit Town Dock, etc.

Three Bays Storm Water Project
Overview

• 3 Year Project
• Total Cost: $692,386
 – $472,574 from U.S. EPA Southeast New England Program
 – $59,014 from MA Office of Coastal Zone Management
 – $160,798 in-kind match from partners
Priority Sites Selected for Design and Permitting

Cotuit
• Ropes Beach (2 BMPs)
• Cordwood Landing

Marstons Mills
• Prince Cove Marina

Results

Short-Term Results
• Treat drainage from 4.8 acres
• Eliminate 70-85% of bacteria and 55% of nitrogen from stormwater runoff at these sites
• Reduce impervious surface by 1,245 square feet
• Restore salt marsh and coastal dunes/beaches
• Remove invasive plant species
• Provide improved public access

Long-Term Goals
• 50% reduction in beach and shellfish closures due to bacteria pollution
• Reduction of algal blooms and fish kills in adjacent embayments
• Improve habitat for fish, shellfish and other wildlife
• Improve water quality
• Support commercial and recreational uses
Traditional Projects Underway (funded)

Attucks Lane Pump Station Area Expansion - Full Design
Long Pond Area Sewer Expansion - Preliminary Design

Phinney’s Lane Sewer Expansion - Preliminary Design
Effect of the Projects

ALL PROJECTS TOTAL

<table>
<thead>
<tr>
<th>Affected MEP Watershed</th>
<th>Watershed Estimated Nitrogen Loading (g/day)</th>
<th>Watershed Nitrogen Removal Target (kg/day)</th>
<th>Total Parcels Affected By Projects</th>
<th>Wastewater Flow Removed By Projects (gal/day)</th>
<th>Nitrogen Removed By Projects (g/day)</th>
<th>% Total Nitrogen Removed</th>
<th>% of Target Nitrogen Removal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centerville River</td>
<td>128,128</td>
<td>180</td>
<td>1,374</td>
<td>246,970</td>
<td>24,525</td>
<td>19.3%</td>
<td>40.8%</td>
</tr>
<tr>
<td>Lewis Bay</td>
<td>54,300</td>
<td>35</td>
<td>17</td>
<td>2,680</td>
<td>266</td>
<td>0.5%</td>
<td>0.8%</td>
</tr>
<tr>
<td>Barnstable Harbor</td>
<td>65,519</td>
<td>24</td>
<td>37</td>
<td>15,724</td>
<td>1,548</td>
<td>2.4%</td>
<td>12.7%</td>
</tr>
<tr>
<td>TOTAL:</td>
<td>247,947</td>
<td>240</td>
<td>1,428</td>
<td>265,374</td>
<td>26,340</td>
<td>41%</td>
<td>12.2%</td>
</tr>
</tbody>
</table>

BY PROJECT

<table>
<thead>
<tr>
<th>Project</th>
<th>Affected MEP Watershed</th>
<th>Watershed Estimated Nitrogen Loading (g/day)</th>
<th>Watershed Nitrogen Removal Target (kg/day)</th>
<th>Total Parcels Affected By Project</th>
<th>Wastewater Flow Removed By Project (gal/day)</th>
<th>Nitrogen Removed By Project (g/day)</th>
<th>% Total Nitrogen Removed</th>
<th>% of Target Nitrogen Removal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attucks Lane</td>
<td>Centerville River</td>
<td>128,128</td>
<td>60</td>
<td>6</td>
<td>1,094</td>
<td>109</td>
<td>0.09%</td>
<td>0.18%</td>
</tr>
<tr>
<td></td>
<td>Barnstable Harbor</td>
<td>65,519</td>
<td>12</td>
<td>31</td>
<td>13,993</td>
<td>1,390</td>
<td>2.1%</td>
<td>11.4%</td>
</tr>
<tr>
<td>PROJECT TOTAL:</td>
<td></td>
<td></td>
<td></td>
<td>37</td>
<td>15,087</td>
<td>1,499</td>
<td>41%</td>
<td>12.2%</td>
</tr>
<tr>
<td>Phinney's Lane</td>
<td>Centerville River</td>
<td>128,128</td>
<td>40</td>
<td>8</td>
<td>80,631</td>
<td>8,011</td>
<td>6.3%</td>
<td>13.3%</td>
</tr>
<tr>
<td></td>
<td>Barnstable Harbor</td>
<td>65,519</td>
<td>17</td>
<td>31</td>
<td>6,500</td>
<td>1,390</td>
<td>2.1%</td>
<td>11.4%</td>
</tr>
<tr>
<td>PROJECT TOTAL:</td>
<td></td>
<td></td>
<td></td>
<td>557</td>
<td>87,131</td>
<td>9,401</td>
<td>41%</td>
<td>12.2%</td>
</tr>
<tr>
<td>Long Pond</td>
<td>Centerville River</td>
<td>128,128</td>
<td>40</td>
<td>8</td>
<td>165,245</td>
<td>16,406</td>
<td>10.1%</td>
<td>27.3%</td>
</tr>
<tr>
<td></td>
<td>Barnstable Harbor</td>
<td>65,519</td>
<td>17</td>
<td>31</td>
<td>152,245</td>
<td>14,906</td>
<td>9.9%</td>
<td>27.3%</td>
</tr>
<tr>
<td>PROJECT TOTAL:</td>
<td></td>
<td></td>
<td></td>
<td>557</td>
<td>181,945</td>
<td>17,312</td>
<td>41%</td>
<td>27.3%</td>
</tr>
</tbody>
</table>

Town of Barnstable, Department of Public Works
Effluent Disposal Capacity Study & Design

Effluent Discharge Location Evaluation

Collection
Transport to Treatment
Treatment
Transport to Disposal
Disposal
Other Ideas Being Considered

Marstons Mills WWTF

- Desire to Expand WW collection in the Area
- Existing Plant fully allocated 42,900 gpd.
 - 30,000 gpd schools
 - 12,000 gpd Housing Trust
- Built 1993 – Beyond 20-year design life
- Limited expansion potential
 - Max. = +/- 113,000 gpd
Marstons Mills WWTF

- Expand and Upgrade MMWWTP
 - ~ $16,000,000
 - Includes offsetting sewering for new disposal field
 - Not including costs if required TOC < 3 mg/l
- Convert MMWWTP to a Pump Station
 - ~ $19,000,000
 - Convey flow to Hyannis WPCF
 - Includes gravity sewer along Route 28
 - ~ $15,500,000 if no gravity sewer along Rte 28
Next Steps

• Continuing public outreach and Plan evolution
• Developing the financial plan
• Keep pressing alternatives
 – Permitting, funding, executing, monitoring
• Preliminary design of traditional projects
• Vet possibilities for MMWWTF
• Document the plan for submission to CCC and DEP
• Continue to aggressively get after the issue
Discussion?